Article
  • Synthesis of PVA Type Photosensitive Water Soluble Polymer and Application to Lipid Sensor
  • Park LS, Kim GH, Ha KR, Chang JG
  • PVA계 감광성 수용성 고분자의 합성 및 Lipid 센서에의 응용
  • 박이순, 김기현, 하기룡, 장진규
Abstract
For the biosensor membrane formation utilizing photolithography method, polyviny alcohol(PVA) was combined with 4-[2-(4-formylphenyl) etheny]pyridinium methosulfate(SbQ) through acetal linkage to give photosensitive water soluble pollymer PVA/SbQ. The degree of substitution of SbQ group in PVA was determined by ultraviolet (UV) spectrophotometry. The effect of concentration of PVA/SbQ in water and degree of substitution of SbQ on the ??? of film and other photolithographic properties were examined. From the film formation study on silicon chip using PVA/SbQ(SbQ 1mole%, 10 wt% ) aqueous solution, the spin coating speed at 2,500∼3,000 rpm, vacuum drying time of 30 min at room temperature, UV irradiation time of 20∼30sec, developing time of 30sec in distilled water were found to be optimum condition. Lipid sensor membrane was prepared on the gate area of pH-ISFET coated with Si3N 4 thin flim by photolithographic method using aqueous suspension of 7.5mg of BSA and 10 mg of lipase in 200 μL of above PVA/SbQ solution. This lipid sensor exhibited a linear calibration curve in the 10∼100mM range of triacetin as a lipid samole.

Lithography공정을 이용한 바이오 센서 감지막 형성을 위하여 수용성 고분자인 polyvinyl alcohol(PVA)에 감광성기인 4-l2-[(4-formylphenyl) ethenyl]pyridinium methosulfate(SbQ)염을 결합시켜 수용성 감광성 고분자(PVA/SbQ)를 얻었다. PVA/SbQ치환율을 사외선(UV) 흡광법으로 정량하였으며, PVA/SbQ 수용액 농도 및 SbQ 치환율에 따른 박막의 두께에의 영향 및 가교 반응 특성을 조사하였다. PVA/SbQ 수용액(SbQ 1 mole%, 농도 10wt%)) 자체의 막형성 실험으로부터 스핀 코터의 회전수는 2.500∼3,000rpm. 진공 전조는 상온에서 30분, UV 조사시간은 20∼30초. 증류수에서의 현상시간은 30초가 적정 조건임을 알았다. 상기 PVA/SbQ수용액 200μL에 BSA 7.5mg lipase 10mg을 포함하는 현탁액을 사용하여 Si3N4 박막형 pH-ISFET의 gate 부위에 감지막을 형성하였으며 이 lipid 센서는 triacetin에 대하여 10∼100mM 농도 범위에서 출력 전압이 직선성의 검정선을 나타내었다.

References
  • 1. Rechnitz GA, Chem. Eng. News, 24(5) (1988)
  •  
  • 2. Moss S, Janata J, Anal. Chem., 47, 2238 (1975)
  •  
  • 3. Turner APF, Karube I, Wilson GSBiosensors, Fundamentals and Applications, Oxford Science, New York, p. 471 (1986)
  •  
  • 4. Nakako M, Hanazato Y, Maeda M, Shiono S, Anal. Chim. Acta, 185, 179 (1986)
  •  
  • 5. Gotoh M, Tamiya E, Karube I, Sens. Mater., 1, 25 (1988)
  •  
  • 6. Harrison DJ, Teclemariam A, Cunningham L, Anal. Chem., 61, 246 (1989)
  •  
  • 7. Hanazato Y, Nakako M, Shiono S, IEEE Trans. Electron Devices, ED33(1), 47 (1986)
  •  
  • 8. Higashi Y, J. Polym. Sci. A: Polym. Chem., 18, 613 (1980)
  •  
  • 9. Ichimura K, Watanabe S, J. Polym. Sci. A: Polym. Chem., 18, 891 (1980)
  •  
  • 10. Ichimura K, J. Polym. Sci. A: Polym. Chem., 20, 1411 (1982)
  •  
  • 11. Ichimura K, Watanabe S, J. Polym. Sci. A: Polym. Chem., 20, 1419 (1982)
  •  
  • 12. Ichimura K, J. Polym. Sci. A: Polym. Chem., 22, 2817 (1984)
  •  
  • 13. Ichimura K, Watanabe SJapan Kokai, 55-62446 (1980)
  •  
  • 14. Ichimura KU.S. Patent, 4,269,941 (1981)
  •  
  • 15. 손병기대한 전자 공학회지, 18권 5호, 22-29 (1981)
  •  
  • 16. Ichimura K, 高分子, 33, 443 (1984)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(4): 372-378

    Published online Jul 25, 1993