Article
  • The Synthesis of Aromatic Polyester; Ⅱ. Temperature Dependence of Transesterification in the Presence of Various Metal Catalysts
  • Park SS, Im SS, Kim DK
  • 방향족 폴리에스테르의 합성;Ⅱ.금속촉매별에 따른 에스테르교환반응시 온도의존성
  • 박상순, 임승순, 김동국
Abstract
The kinetic rate and temperature dependence of transesterification of 2,6-DMN with ethylene glycol was investigated in the presence of various catalysts under a given temperature ranging from 190 to 250℃. The degree of reaction was determined by the measurement of output of methanol which was distilled from the reactor. As was established earlier, the reactivity of metal compound (e.g. Zn++, Pb++ etc.) known as a weak-base was found to be constantly increased as the concentration of catalysts and temperature was increased. The rate constant was divided into initial and total rate constant for a satisfactory kinetic evaluation. And also, Activation energy of Zn++ in 2,6-PEN was as about 2 times as better than that of Zn++ in PET.

Dimethyl 2,6-naphthalate(2,6-DMN)과 Ethylene glycol을 190∼250℃ 사이의 일정온도에서 촉매별로 에스테르교환반응시켜 반응속도와 온도의존성을 살펴보았다. 이때 반응성도에 따라 반응계에서 부산물로 유출되어 나오는 메탄올의 양을 측정하여 반응도를 측정하였다. 이 전의 결과와 마찬가지로, Zn++, Pb++ 등의 약염기성 금속화합물의 반응도는 촉매농도 뿐만 아니라 온도상승에도 지속적으로 증가하였다. 만족스러운 속도론적인 처리를 하기 위해서는 속도상수를 초기속도 상수와 전체속도상수로 분류하는 것이 타당하였다. 2,6-PEN에서 Zn++의 활성화에너지값을 PET의 활성화에너지값과 비교하여 2배정도 높음을 알았다.

References
  • 1. Sorsta MF, Chebatureva NA, Mosk. Khim. Tekhmol. Inst., 61, 103 (1969)
  •  
  • 2. Datye KV, Raje HM, J. Appl. Polym. Sci., 30, 205 (1985)
  •  
  • 3. Yamanis J, Adelman M, J. Polym. Sci. A: Polym. Chem., 14, 1961 (1976)
  •  
  • 4. Ravindranath K, Mashelkar RA, J. Polym. Sci. A: Polym. Chem., 20, 3447 (1982)
  •  
  • 5. Ravindranath K, Mashelkar RA, Chem. Eng. Sci., 41(9), 2197 (1986)
  •  
  • 6. Griehl W, Schnock G, J. Polym. Sci. A: Polym. Chem., 30, 413 (1957)
  •  
  • 7. Fontana CM, J. Polym. Sci. A: Polym. Chem., 6, 2343 (1968)
  •  
  • 8. Challa G, Makromol. Chem., 38, 123 (1960)
  •  
  • 9. Sumoto MKogyo Kagaku Zasshi(J. Chem. Soc. Jpn. Ind. Chem. Sect.), 66, 1867 (1963)
  •  
  • 10. Yoda K, Kogyo Kagoku Zasshi, 74, 1476 (1971)
  •  
  • 11. Peebles LH, Wagner WS, J. Phys. Chem., 63, 1206 (1959)
  •  
  • 12. Hovenkamp SG, J. Polym. Sci. A: Polym. Chem., 9, 3617 (1971)
  •  
  • 13. Walker CC, J. Polym. Sci. A: Polym. Chem., 21, 623 (1983)
  •  
  • 14. Arunpal A, Chem. Age Ind., 29, 733 (1978)
  •  
  • 15. Barandiaran MJ, Asua JM, J. Polym. Sci. A: Polym. Chem., 27, 4241 (1989)
  •  
  • 16. Shah TH, Bhatty JI, Gamlen GA, Dollimore D, J. Macromol. Sci.-Chem., 21(4), 413 (1984)
  •  
  • 17. Tomita K, Kobunshi Ronbunshu, 33, 417 (1976)
  •  
  • 18. Tomita K, Ida H, Polymer, 14, 55 (1973)
  •  
  • 19. VanUitert LG, Fernelius WC, Douglas BE, J. Am. Chem. Soc., 75, 2736 (1953)
  •  
  • 20. Anon, Res. Disclosure, 294, 807 (1988)
  •  
  • 21. Anon, Res. Disclosure, 294, 816 (1988)
  •  
  • 22. Jackson WJ, Wicker THU.S. Patent, 4,745,211 (1988)
  •  
  • 23. VanSickle DEU.S. Patent, 4,876,378 (1989)
  •  
  • 24. Wiegand E, Niemann W, Kohler MGer. Offen., 2455666 (1975)
  •  
  • 25. Shigeo UEuropean Patent, 225631 (1987)
  •  
  • 26. Park SS, Im SS, Kim DK, Polym.(Korea), 17(2), 212 (1993)
  •  
  • 27. Hill CGAn Introduction to Chemical Engineering Kinetics & Reactor Design, Vol. 3, 24, John Wiley & Sons, New York (1977)
  •  
  • 28. Levenspiel OChemical Reaction Engineering, Chapt. 2, 29, John Wiley & Sons, New York (1972)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(3): 324-334

    Published online May 25, 1993