Article
  • Adsorption of Uranium with Acrylamidoxime-vinylphosphate copolymer
  • Song HY, Kim DC, Baek JH, Jeon YS
  • Acrylamidoxime-vinylphosphate 공중합체에 의한 우라늄 흡착
  • 송해영, 김동철, 백중현, 전영신
Abstract
Porous A-AN-VP membrane was prepared and the physical properties of samples were investigated by the experiment of pore volume and permeability to determine the adsorption/desorption characteristics of Uranium for the porous A-AN-VP membrane. The infrared spectra of AN-VP copolymer exhibited the chracteristic absorption of amidoxime, i.e. -CN stretching vibration of the hydroxylamine at 2245cm-1, -CH2 stretching vibration for bond at 2930cm-1. The pore volume of A-AN-VP of 1.05×10-3m3/kg was decreased by about 50% from that of AN-VP of 2.15×10-3m3/kg. Water permeability of the AN-VP was found to be much better than that of the A-AN-VP at constant suction pressure (25kg/cm2). Water permeability increased with time. The minimum immersion time to obtain equilibrium of desorption in 1N-H2SO4) observed to be 30 minutes. The transported uranium ion through the amidoxime membrane was investigated using a stirred batch dialyzer which consists of a pair of identical cylindrical cells. The membrane was interposed between the two cells. The amounts of uranium permeation through the A-AN-VP increased with time. The porous A-AN-VP exhibited excellent results with respect to adsorption rate and durability from dilute solution.

다공성 A-AN-VP membrane을 제조하여 다공성측정, 투수성실험, 우라늄 투과성, 우라늄 흡착 및 탈착실험을 알아보고 적외선 스펙트럼을 통하여 2245cm-1에서 hydroxylamine의 -CN 특성 피크, 2930cm-1에서 -CN2 특성 피크가 나타난 것으로 보아 아미드옥심화됨을 알았다. pore volume을 AN-VP는 2.15×10-3m3/kg에서 A-AN-VP는 1.05×10-3m3)/kg으로 아미드옥심화됨에 따라 50% 감소하였다. Membrane의 투수성은 시간에 따라 선형적으로 증가 현상을 나타내며 비다공성보다 다공성 membrane의 투수성이 더 좋았으며. 흡착된 우라늄은 1N-H2SO4 용액에서 30분 이내에 100% 탈착됨을 알았다. 우라늄 투과실험을 행한 결과 초기에는 membrane에 흡착되다가 최대 흡착을 이루면 평형이 될 때까지 우라늄이온이 아미드옥심 membrane을 통과하는데 그 속도 및 통과량은 선형적으로 증가하였으며 본 연구에서 제조한 A-AN-VP membrane은 희박용액으로부터 우라늄분리에 적합한 흡착막임을 알았다.

References
  • 1. Uranium Resource Production and Demand, A. Joint Report by the OECD Nuclear Energy Agency and Internation Atomic Energy (1979)
  •  
  • 2. Chemiker-Zeitung, Jahrgang, 107(6), 177 (1983)
  •  
  • 3. Graziani R, Bombiere S, J. Chem. Soc.-Dalton Trans., 2059 (1972)
  •  
  • 4. Kanno M, Saito K148, HIT-EL80-031 (1980)
  •  
  • 5. Yamasita H, Ozawa Y, Nakajima F, Murata T, Bull. Chem. Soc. Jpn., 53(5), 1331 (1980)
  •  
  • 6. Sugasaka K, Katoh S, Takai N, Takahashi H, Umezawa Y, Sep. Sci. Technol., 16(9), 971 (1981)
  •  
  • 7. Huang CT, Chia T, Ind. Eng. Chem. Res., 27, 1681 (1988)
  •  
  • 8. Chaney DWU.S. Patent, 2,573,031 (1951)
  •  
  • 9. Daul GC, Reid JD, Reinhardt RM, Ind. Eng. Chem., 46, 1042 (1954)
  •  
  • 10. Im SS, Kim DK, Noh ST, Kang EY, Jeon DW, Polym.(Korea), 14(3), 257 (1990)
  •  
  • 11. Satio K, Yamada S, Furusaki S, Sugo T, Okamoto J, J. Membr. Sci., 34, 307 (1987)
  •  
  • 12. Satio K, Yamaguchi T, J. Nucl. Sci. Technol., 19(2), 145 (1982)
  •  
  • 13. Hirotsu T, Katoh S, Sugasaka K, Seno M, Itagaki T, J. Chem. Soc.-Dalton Trans., 1983 (1986)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(2): 161-167

    Published online Mar 25, 1993