Article
  • A Study on the Surface Modification of Fluoropolymers for Improved Adhesion
  • Ha KR, Garton A
  • 접착성 증가를 위한 플루오르 고분자들의 표면 개질에 관한 연구
  • 하기룡, Garton A
Abstract
A film and a powder form of perfluoroalkoxy(PFA, a copolymer of tetrafluoroethylene and perfluoroalkylvinylether) were exposed to sodium naphthalenide (Na/naphth) etchant so as to defluorinate the surface for improved wettability, and hence adhesion. The thermal instability of the etched layer, compared to the unetched layer, was used to determine the rate of defluorination by thermogravimetric analyzer(TGA). According to the TGA results, the powder form of PFA showed about a 60 times faster defluorination rate than the film form PFA due to a higher surface area. To understand the molecular structure of the etched layer, X-ray photoelectron spectroscopy(XPS) valence band spectra were taken before and after Na/naphth treatment. The overall features of the etched PFA(E-PFA) were almost the same as those of the oxidized carbon fiber. Therefore, the molecular structure of the etched layer should be very similar to that of the oxidized carbon fiber.

표면 장력이 아주 낮은 Perfluoroalkoxy(PFA, tetrafluoroethylene과 perfluoroalkylvinylether의 공중합체)와 같은 불소 수지의 접착력 증가를 위하여, sodium naphthalenide(Na/naphth)에 의한 표면 에칭법이 산업계에서 널리 사용되고 있다. 이와 같은 고체-액체 불균일 반응에서 PFA의 표면적이 에칭속도에 미치는 영향을 연구하기 위하여, 분막형과 필름형 PFA를 사용하여 실험을 행하였다. 에칭된 PFA(E-PFA)의 에칭된 층은 200℃ 이상의 고온에서 불안정하고, Na/naphth에 의한 PFA의 에칭 속도는 분말형이 필름형보파다 약 60배 빠름을 열 무게 분석법을 이용하여 확인하였다. 그리고 X선 광전자 분광법(XPS)을 이용한 E-PFA의 원자가 띠 스펙트럼으로 부터, 에칭된 층의 구조가 산화된 탄소 섬유와 거의 같음을 확인하였다.

References
  • 1. Putnam REHigh Performance Polymers, Their Origin and Development, ed. by R.B. Seymour & G.S. Kirshenbaum, p. 279, Elsevier Sci. Publishing Co. (1986)
  •  
  • 2. Olyphant M, Nowick TETechnology Assessment Series on Laminates, Section 10, p. 7 (1987)
  •  
  • 3. Dwight DW, Riggs WM, J. Colloid Interface Sci., 47, 650 (1974)
  •  
  • 4. Riggs WM, Dwight DW, J. Electron Spectr. Relat. Phenom., 5, 447 (1974)
  •  
  • 5. Bening RC, McCarthy TJ, Macromolecules, 23, 2648 (1990)
  •  
  • 6. Rye RR, Arnold GW, Langmuir, 5, 1331 (1989)
  •  
  • 7. Siperko LM, Thomas RR, J. Adhes. Sci. Technol., 3(3), 157 (1989)
  •  
  • 8. Ha K, J. Adhes., 33, 169 (1991)
  •  
  • 9. Ha K, J. Adhes., 36, 55 (1991)
  •  
  • 10. Masuda T, Tang B, Higashimura T, Yamaoka H, Macromolecules, 18, 2369 (1985)
  •  
  • 11. Pireaux JJPhoton, Electron, and Ion Probes of Polymer Structure and Properties, ACS Symposium Series 162, ed. by D.W. Dwight & T.J. Fabish, American Chemical Society, Washington, D.C., p. 169 (1981)
  •  
  • 12. Pireaux JJ, J. Polym. Sci. A: Polym. Chem., 17, 1175 (1979)
  •  
  • 13. Gelius UElectron Spectroscopy, ed. by D.A. Shirley, North Holland, Amsterdam, p. 319 (1972)
  •  
  • 14. Brewis DM, Cornyn J, Fowler JR, Fibre Sci. Technol., 12, 41 (1979)
  •  
  • 15. Clark DT, J. Polym. Sci. A: Polym. Chem., 11, 389 (1973)
  •  
  • 16. Wheeler DR, Pepper SV, J. Vac. Sci. Technol., 20(2), 226 (1982)
  •  
  • 17. Chaney R, Barth GPolymer Surface Dynamics, ed. by J.D. Andrade, p. 171, Plenum Press, New York (1988)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(1): 85-92

    Published online Jan 25, 1993