Article
  • Synthesis and Blood Compatibility of Polyurethane Grafted with γ-Alkyl- orγ-Benzyl-L-Glutamate
  • Kim KY, Jang SW, Kim HJ, Lee YM, Kim JS, Choi KS, Kim YH
  • γ-Alkyl- 또는 γ-Benzyl-L-Glutamate가 그라프트된 폴리우레탄의 합성과 혈액적합성 평가
  • 김계용, 장성욱, 김형준, 이영무, 김점식, 최규석, 김영하
Abstract
Novel graft copolymers consisting of commercial polyurethane (Pellethane 2363 80 AE) grafted with the γ-benzyl and -alkyl-L-glutamate were synthesized and their mechanical properties were studied. The peptide units formed an α-helical conformation, a β-sheet conformation and a combination of α-helical and random coil conformation for polyurethane grafted with γ-benzyl-L-glutamate(PGB), polyurethane grafted with γ-ethyl-L-glutamate(PGE) and polyurethane grafted with γ-methyl-L-glutamate (PGM), respectively, as evidenced by FT-IR analysis. The tensile strength and elongation of the graft copolymers decreased with increasing peptide content. The degree of water absorption of the samples was less than three percent. The platelets adhesion performance for the PGB series was less than ten percent as investigated by the Coulter counter. From the SEM pictures, fibrin network and adhered platelets on the surface of PGB series were not seen. The clotting time of the graft copolymers was longer than that of polyurethane or homopolypeptide. The PGB series having an α-helical conformation exhibited the clotting time of over eighty minutes.

폴리우레탄에 γ-벤질과 -알킬-L-glutamate가 그라프트된 새로운 공중합체를 합성하고 그특성을 평가하였다. 펩티드는, PGB의 경우 α-helix구조를, PGE의 경우 β-sheet 구조를 갖으며, PGM의 경우 α-helix와 random coil구조가 혼재하는 것을 FT-IR로 확인할 수 있었다. 그라프트 공중합체의 기계적성질은 펩티드양이 증가함에 따라 감소하였고 함수율은 3% 이하였으며, 혈소판 측정기에 의해 PGB series의 혈소판 접착능이 10% 이하인 것을 확인할 수 있었다. 그라프트 공중합체의 혈액응고 시간은 전반적으로 폴리우레탄과 펩티드 보다 길었다. α-helix구조를 갖는 PGB series의 혈액응고시간은 80분 이상을 나타내었다.

References
  • 1. Spectrx®-SX System Brochure 81068, Medtronic, Inc., Minneapolis, Minn
  •  
  • 2. Wong EWC, Am. Chem. Soc. Div. Org. Coat. Plast., 43, 942 (1980)
  •  
  • 3. Gilding DK, Taylor JAU.S. Patent, 3,752,786 (1973)
  •  
  • 4. Boretos JW, Pierce WS, Baier RE, Leroy AF, Donachy HJ, J. Biomed. Mater. Res., 9, 327 (1975)
  •  
  • 5. In KJ, Lee YM, Kim KY, Lee YK, Polym.(Korea), 7(1), 53 (1983)
  •  
  • 6. Jang SW, Kim JH, Park CK, Sung YK, Cho JS, Kim KY, Polym.(Korea), 13(2), 134 (1989)
  •  
  • 7. So DS, Jang SW, Sung YK, Cho JS, Kim KY, Polym.(Korea), 13(6), 529 (1989)
  •  
  • 8. Kim KY, Jang SW, Lee YJ, Lee YM, Kim JS, Polym. J., 23(4), 259 (1991)
  •  
  • 9. Greenstein JP, Winitz MChemistry of the Amino Acids, p. 936, John Wiley and Sons, Inc. (1969)
  •  
  • 10. Woodward RB, Scharm CH, J. Am. Chem. Soc., 69, 1551 (1947)
  •  
  • 11. Blumstein RPh.D. Thesis, University of Delaware, Delaware, U.S.A., June (1965)
  •  
  • 12. Zisman WA, Fox HY, J. Colloid Sci., 7, 109 (1952)
  •  
  • 13. Lee RI, White DD, J. Am. Med. Sci., 145, 495 (1913)
  •  
  • 14. Kataoka K, Makromol. Chem., 179, 1121 (1978)
  •  
  • 15. Komodo T, Kim KY, Kawai T, Makromol. Chem., 176, 373 (1975)
  •  
  • 16. Asabourian A, Broat ER, J. Am. Chem. Soc., 78, 145 (1956)
  •  
  • 17. Kim KY, Komodo T, Kawai T, Makromol. Chem., 178, 2089 (1977)
  •  
  • 18. Kim KY, In KJ, Polym.(Korea), 5(6), 459 (1981)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1992; 16(1): 51-60

    Published online Jan 25, 1992