Article
  • Preparation of Organic Thin Film and Surface Modification by Plasma Polymerization : 1. Modification of Steel Surface by Perfluoropropene-Plasma Polymerization
  • Seo ED, Lym HS, Kang YR
  • 플라즈마중합에 의한 유기박막합성과 표면개질: 1. Perfluoropropene의 플라즈마중합에 의한 철표면 개질
  • 서은덕, 임학상, 강영립
Abstract
Perfluoropropene was plasma-polymerized on a steel substrate at the system pressure of 140mtorr and 250mtorr with r. f. discharge power of 25W in a tubular reactor. Polymer deposits were examined with ESCA, SEM and contact-angle goniometer to analyze the surface properties and polymer structure. The surface of substrate was modified hydrophobically by plasma thin film. The protective barrier performances of the plasma polymers as an interfacial material were evaluated in 4% NaCl solution at 60℃. Results of our studies showed that the corrosion resistances of the samples coated with plasma thin film were much better than those of uncoated ones. For the samples coated with thin films at 140mtorr and 250mtorr, the former was superior to the latter in anticorrosive performance. This observation was attributed to the structural differences of the plasma polymers formed at different reaction conditions. It was also found that the thicker plasma polymer was more effective on the protection period of substrate in the corrosive environment.

튜브형 반응기를 사용하여 방전출력 25 W, 압력 140 mtorr와 250 mtorr에서 perfluoropropene을 철판상에 플라즈마 중합하였다. 플라즈마중합체의 표면특성과 구조분석을 위하여 ESCA, SEM 및 접촉각측정기를 사용하였으며 생성된 플라즈마중합 박막에 의하여 기질표면이 소수성으로 변성되었다. 계면재료로서 플라즈마중합체의 내부식성능을 60℃, 4% 염수용액에서 조사하였다. 플라즈마중합에 의해서 표면이 코팅된 시료는 코팅되지 않은 시료에 비해서 월등한 내부식성을 나타내었고 140 mtorr에서 중합된 박막이 250 mtorr에서 중합된 박막보다 내부식성이 우수하였다. 이러한 결과는 플라즈마 중합반응조건에 따른 박막조성의 차이로서 설명할 수 있었다. 박막두께의 효과는 두께가 증가할 수록 부식방지 효과가 우수함을 관찰하였다.

References
  • 1. Yasuda HPlasma Polymerization, Academic Press, Orlando, Florida (1985)
  •  
  • 2. Williams T, Edwards WH, Trans. Inst. Met. Finish, 44, 119 (1966)
  •  
  • 3. Schreiber HP, Wertheimer MR, Wrobel AM, Thin Solid Films, 72, 487 (1980)
  •  
  • 4. Hahn AW, York DH, Nichols ME, Armomin GC, Yasuda H, J. Appl. Polym. Sci. Appl. Polym. Symp., 38, 55 (1984)
  •  
  • 5. Seo E, Yasuda H, Polym.(Korea), 13(4), 359 (1989)
  •  
  • 6. Seo ED, Yasuda H, Polym.(Korea), 14(4), 378 (1990)
  •  
  • 7. Clark DT, Shuttleworth D, J. Polym. Sci. A: Polym. Chem., 18, 27 (1980)
  •  
  • 8. Clark DT, Hutton DR, J. Polym. Sci. A: Polym. Chem., 25, 2643 (1987)
  •  
  • 9. Inagaki N, Ohkubo J, J. Membr. Sci., 27, 63 (1986)
  •  
  • 10. Clark DT, J. Polym. Sci. A: Polym. Chem., 18, 407 (1980)
  •  
  • 11. Rose PW, Liston EMPlastic Engineering p. 40-44, October (1985)
  •  
  • 12. Hammermesh CL, Crane LW, J. Appl. Polym. Sci., 22, 2395 (1978)
  •  
  • 13. Dickie RA, Floyd FLPolymeric Materials for Corrosion Control, ACS Symposium Series 322, American Chemical Society, Washington D.C. (1986)
  •  
  • 14. Yasuda H, J. Membr. Sci., 18, 273 (1984)
  •  
  • 15. Kawakami M, Yamashita Y, Iwamoto M, Kagawa S, J. Membr. Sci., 19, 249 (1984)
  •  
  • 16. Yasuda H, Hirotsu T, Olf HG, J. Appl. Polym. Sci., 21, 3179 (1977)
  •  
  • 17. Parker E, Gerhart H, Ind. Eng. Chem., 59, 53 (1967)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1991; 15(5): 570-576

    Published online Oct 25, 1991