Article
  • Coaxial Capillary Microfluidic Chips Modified with Poly(vinyl alcohol) for the Long-term Production of Uniform Oil Droplets
  • Guk-Young Ahn*, **,# , Inseong Choi*, **,# , Se Hee Hwang*, **, Jong Hwa Seo*, **, Eun Seo Kim*, **, Do-Hyun Oh*, **, Young-Hyun Ryu*, **, Min-Ho Kang*, **,† , and Sung-Wook Choi*, **,†

  • *Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea
    **Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea

  • 균일한 에멀젼의 연속 생산을 위해 폴리비닐 알코올로 개질한 동축 정렬 캐필러리 미세유체장치
  • 안국영*, **,# · 최인성*, **,# · 황세희*, ** · 서종화*, ** · 김은서*, ** · 오도현*, ** · 류영현*, ** · 강민호*, **,† · 최성욱*, **,†

  • *가톨릭대학교 바이오메디컬화학공학과, **가톨릭대학교 생명공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Chen, J.; Chen, D.; Xie, Y.; Yuan, T.; Chen, X. Progress of Microfluidics for Biology and Medicine. Nanomicro Lett. 2013, 5, 66-80.
  •  
  • 2. Mashaghi, S.; Abbaspourrad, A.; Weitz, D. A.; van Oijen, A. M. Droplet Microfluidics: A Tool for Biology, Chemistry and Nanotechnology. Trends Analyt. Chem. 2016, 82, 118-125.
  •  
  • 3. Tabeling, P. Recent Progress in the Physics of Microfluidics and Related Biotechnological Applications. Curr. Opin. Biotechnol. 2014, 25, 129-134.
  •  
  • 4. Guo, J.; Yu, Y.; Cai, L.; Wang, Y.; Shi, K.; Shang, L.; Pan, J.; Zhao, Y. Microfluidics for Flexible Electronics. Mater. Today 2021, 44, 105-135.
  •  
  • 5. Wang, J.; Shao, C.; Wang, Y.; Sun, L.; Zhao, Y. Microfluidics for Medical Additive Manufacturing. Engineering 2020, 6, 1244-1257.
  •  
  • 6. Sia, S. K.; Whitesides, G. M. Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies. Electrophoresis 2003, 24, 3563-3576.
  •  
  • 7. Faustino, V.; Catarino, S. O.; Lima, R.; Minas, G. Biomedical Microfluidic Devices by Using Low-cost Fabrication Techniques: A Review. J. Biomech. 2016, 49, 2280-2292.
  •  
  • 8. Raj M, K.; Chakraborty, S. PDMS Microfluidics: A Mini Review. J. Appl. Polym. Sci. 2020, 137, 48958.
  •  
  • 9. Hwang, J.; Cho, Y. H.; Park, M. S.; Kim, B. H. Microchannel Fabrication on Glass Materials for Microfluidic Devices. Int. J. Precis. Eng. Manuf. 2019, 20, 479-495.
  •  
  • 10. Poenar, D. P.; Iliescu, C.; Carp, M.; Pang, A. J.; Leck, K. J. Glass-based Microfluidic Device Fabricated by Parylene Wafer-to-wafer Bonding for Impedance Spectroscopy. Sens. Actuator A Phys. 2007, 139, 162-171.
  •  
  • 11. Tsao, C.-W. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. Micromachines 2016,7, 225.
  •  
  • 12. Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic Surface Modification of PDMS for Droplet Microfluidics Using a Simple, Quick, and Robust Method via PVA Deposition. Microsyst. Nanoeng. 2017, 3, 16091.
  •  
  • 13. Mastiani, M.; Seo, S.; Riou, B.; Kim, M. High Inertial Microfluidics for Droplet Generation in a Flow-focusing Geometry. Biomed. Microdevices 2019, 21, 50.
  •  
  • 14. Fu, T.; Wu, Y.; Ma, Y.; Li, H. Z. Droplet Formation and Breakup Dynamics in Microfluidic Flow-focusing Devices: From Dripping to Jetting. Chem. Eng. Sci. 2012, 84, 207-217.
  •  
  • 15. Shakeri, A.; Khan, S.; Didar, T. F. Conventional and Emerging Strategies for the Fabrication and Functionalization of PDMS-Based Microfluidic Devices. Lab Chip 2021, 21, 3053-3075.
  •  
  • 16. Jang, M.; Park, C. K.; Lee, N. Y. Modification of Polycarbonate with Hydrophilic/hydrophobic Coatings for the Fabrication of Microdevices. Sens. Actuators B Chem. 2014, 193, 599-607.
  •  
  • 17. Lee, H.-C.; Wang, C.-Y.; Lin, C.-H. High-performance Humidity Sensors Utilizing Dopamine Biomolecule-coated Gold Nanoparticles. Sens. Actuators B Chem. 2014, 191, 204-210.
  •  
  • 18. Sarvi, F.; Yue, Z.; Hourigan, K.; Thompson, M. C.; Chan, P. P. Y. Surface-functionalization of PDMS for Potential Micro-bioreactor and Embryonic Stem Cell Culture Applications. J. Mater. Chem. B 2013, 1, 987-996.
  •  
  • 19. Long, H. P.; Lai, C. C.; Chung, C. K. Polyethylene Glycol Coating for Hydrophilicity Enhancement of Polydimethylsiloxane Self-driven Microfluidic Chip. Surf. Coat. Technol. 2017, 320, 315-319.
  •  
  • 20. Wu, D.; Luo, Y.; Zhou, X.; Dai, Z.; Lin, B. Multilayer Poly(vinyl alcohol)-adsorbed Coating on Poly(dimethylsiloxane) Microfluidic Chips for Biopolymer Separation. Electrophoresis 2005, 26, 211-218.
  •  
  • 21. Wiedemeier, S.; Eichler, M.; Römer, R.; Grodrian, A.; Lemke, K.; Nagel, K.; Klages, C.-P.; Gastrock, G. Parametric Studies on Droplet Generation Reproducibility for Applications with Biological Relevant Fluids. Eng. Life Sci. 2017, 17, 1271-1280.
  •  
  • 22. Imani Moqadam, S.; Baune, M.; Bösing, I.; Heinzel, C.; Meyer, D.; Thomann, A.; Wielki, N.; Ellendt, N. Reproducibility of High-Throughput Sample Properties Produced by a High-Temperature Molten Metal Droplet Generator. Metals 2020,10, 297.
  •  
  • 23. Martins, J. P.; Torrieri, G.; Santos, H. A. The Importance of Microfluidics for the Preparation of Nanoparticles as Advanced Drug Delivery Systems. Expert Opin. Drug Deliv. 2018, 15, 469-479.
  •  
  • 24. Rezvantalab, S.; Keshavarz Moraveji, M. Microfluidic Assisted Synthesis of PLGA Drug Delivery Systems. RSC Adv. 2019, 9, 2055-2072.
  •  
  • 25. Zhang, J.; Wang, C.; Liu, X.; Yi, C.; Wang, Z. L. Experimental Studies of Microchannel Tapering on Droplet Forming Acceleration in Liquid Paraffin/Ethanol Coaxial Flows. Materials 2020, 13, 944.
  •  
  • 26. Dressaire, E.; Sauret, A. Clogging of Microfluidic Systems. Soft Matter 2017, 13, 37-48.
  •  
  • 27. Park, Y.; Pham, T. A.; Beigie, C.; Cabodi, M.; Cleveland, R. O.; Nagy, J. O.; Wong, J. Y. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers. Langmuir 2015, 31, 9762-9770.
  •  
  • 28. Kearney, M.-C.; McKenna, P. E.; Quinn, H. L.; Courtenay, A. J.; Larrañeta, E.; Donnelly, R. F. Design and Development of Liquid Drug Reservoirs for Microneedle Delivery of Poorly Soluble Drug Molecules. Pharmaceutics 2019, 11, 605.
  •  
  • 29. Agrawal, A. G.; Kumar, A.; Gide, P. S. Formulation of Solid Self-nanoemulsifying Drug Delivery Systems Using N-methyl Pyrrolidone as Cosolvent. Drug Dev. Ind. Pharm. 2015, 41, 594-604.
  •  
  • 30. Wang, S.; Yang, X.; Wu, F.; Min, L.; Chen, X.; Hou, X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small 2020, 16, 1905318.
  •  
  • 31. Doufène, K.; Tourné-Péteilh, C.; Etienne, P.; Aubert-Pouëssel, A. Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir 2019, 35, 12597-12612.
  •  
  • 32. Al Nahas, K.; Cama, J.; Schaich, M.; Hammond, K.; Deshpande, S.; Dekker, C.; Ryadnov, M. G.; Keyser, U. F. A Microfluidic Platform for the Characterisation of Membrane Active Antimicrobials. Lab Chip 2019, 19, 837-844.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(5): 582-589

    Published online Sep 25, 2023

  • 10.7317/pk.2023.47.5.582
  • Received on Mar 7, 2023
  • Revised on May 29, 2023
  • Accepted on Jul 28, 2023

Correspondence to

  • Min-Ho Kang. Sung-Wook Choi
  • *Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea
    **Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Korea

  • E-mail: mhkang@catholic.ac.kr, choisw@catholic.ac.kr