Article
  • Heat Dissipation Material with Alumina Selectively Dispersed Using PS-PMMA Diblock Copolymer
  • Min-gyu Kim, Chan Su Park, and Nam-Ju Jo

  • Department of Polymer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea

  • PS-PMMA Diblock Copolymer를 이용하여 알루미나를 선택적으로 분산한 방열 소재
  • 김민규 · 박찬수 · 조남주

  • 부산대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C 2007, 111, 7565-7569.
  •  
  • 2. Mallik, S.; Ekere, N.; Best, C.; Bhatti, R. Investigation of Thermal Management Materials for Automotive Electronic Control Units. Appl. Thermal Eng. 2011, 31, 355-362.
  •  
  • 3. Im, H. G.; Kim, J. H. Development and Technology Trend of Heat Dissipating Composite Material for Electronic Materials. NICE 2011, 29, 554-560.
  •  
  • 4. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41-85.
  •  
  • 5. Jeong, H. S. Analysis of Market Trends and Commercialization Issues of Heat Dissipating Materials and Heat Dissipating Bonding Technology; KISTI: Seoul, Korea, 2013.
  •  
  • 6. Ghezelbash, Z.; Ashouri, D.; Mousavian, S.; Ghandi, A. H.; Rahnama, Y. Surface Modified Al2O3 in Fluorinated Polyimide/Al2O3 Nanocomposites: Synthesis and Characterization. Mater. Sci. 2012,35, 925-931.
  •  
  • 7. Son, H. S.; Kim, K. H.; Lee, W. J.; Kim, J. H.; Yoon, K. H.; Lee, Y. S.; Paik, H. J. Enhanced Shear Thickening of Polystyrene-poly (acrylamide) and Polystyrene-poly(HEMA) Particles. Colloid and Polym. Sci. 2019, 297, 95-105.
  •  
  • 8. Pizarro, G. D. C.; Marambio, O.; Orell, M. J.; Geckeler, K. E. Effect of Annealing and UV-radiation Time Over Micropore Architecture of Self-assembled Block Copolymer Thin Film. Exp. Polym. Lett. 2015, 9, 525-535.
  •  
  • 9. Kim, B. J.; Baek, K. Y. Special Planning: Block Copolymer-Inorganic Nanoparticle Composite Material. NICE 2010, 28, 714-719.
  •  
  • 10. Wang, X.; Jiang, Q.; Xu, W.; Cai, W.; Inoue, Y. K.; Zhu, Y. Effect of Carbon Nano Tube Length on Thermal, Electrical and Mechanical Properties of CNT/bismaleimide Composites. CARBON, 2013, 53, 145-152.
  •  
  • 11. Yan, K. Y.; Xue, Q. Z.; Zheng, Q. B.; Hao, L. Z. The Interface Effect of the Effective Electrical Conductivity of Carbon Nanotube Composites. Nanotechnology, 2007,18.
  •  
  • 12. Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers. CARBON, 2012,50, 4830-4838.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(3): 354-360

    Published online May 25, 2023

  • 10.7317/pk.2023.47.3.354
  • Received on Jan 16, 2023
  • Revised on Mar 10, 2023
  • Accepted on Mar 14, 2023

Correspondence to

  • Nam-Ju Jo
  • Department of Polymer Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea

  • E-mail: namjujo@pusan.ac.kr