Note
  • Polypyrrole/Poly(1-(2-carboxyehtyl)pyrrole) Bilayered Composite Scaffold for Cell Adhesion
  • Joo-Woon Lee

  • Chemistry - School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea

  • 이중층 폴리피롤 복합재료 지지체
  • 이주운

  • 한국교통대학교 교양학부-화학

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Li, J.; Lin, X. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode. Biosen. Bioelectron. 2007, 22, 2898-2905.
  •  
  • 2. Poole-Warren, L.; Lovell, N.; Baek, S.; Green, R. Development of Bioactive Conducting Polymers for Neural Interfaces. Expert Rev. Med. Devic. 2010, 7, 35-49.
  •  
  • 3. Shirakawa, H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2574-2580.
  •  
  • 4. Guimard, N. K.; Gomez, N.; Schmidt, C. E. Conducting Polymers in Biomedical Engineering. Prog. Polym. Sci. 2007, 32, 876-921.
  •  
  • 5. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.
  •  
  • 6. Lee, J.-W.; Serna, F.; Schmidt, C. E. Carboxy-Endcapped Conductive Polypyrrole:  Biomimetic Conducting Polymer for Cell Scaffolds and Electrodes. Langmuir 2006, 22, 9816-9819.
  •  
  • 7. McCarley, R. L.; Willicut, R. J. Tethered Monolayers of Poly((N-pyrrolyl)alkanethiol) on Au. J. Am. Chem. Soc. 1998, 120, 9296-9304.
  •  
  • 8. Mecerreyes, D.; Pomposo, J. A.; Bengoetxea, M.; Grande, H. Novel Pyrrole End-Functional Macromonomers Prepared by Ring-Opening and Atom-Transfer Radical Polymerizations. Macromolecules 2000, 33, 5846-5849.
  •  
  • 9. Lee, J.-W. Synthesis of Methacrylate-Endcapped Conductive Polypyrrole as a Telechelic Polymer. Polym. Korea 2017, 41, 367-371.
  •  
  • 10. O’Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88-95.
  •  
  • 11. Nikolova, M. P.; Chavali, M. S. Recent Advances in Biomaterials for 3D Scaffolds: A review. Bioact. Mater. 2019, 4, 271-292.
  •  
  • 12. Rowlands, A. S.; Lim, S. A.; Martin, D.; Cooper-White, J. J. Polyurethane/Poly(lactic-co-glycolic) Acid Composite Scaffolds Fabricated by Thermally Induced Phase Separation. Biomaterials 2007, 28, 2109-2121.
  •  
  • 13. Chaudhari, A. A.; Vig, K.; Baganizi, D. R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S. R.; Pillai, S. R. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016, 17, 1974-2005.
  •  
  • 14. Munir, N.; McDonald, A.; Callanan, A. Integrational Technologies for the Development of Three-Dimensional Scaffolds as Platforms in Cartilage Tissue Engineering. ACS Omega 2020, 5, 12623-12636.
  •  
  • 15. Yao, Q.; Nooeaid, P.; Detsch, R.; Roether, J. A.; Dong, Y.; Goudouri, O.-M.; Schubert, D. W.; Boccaccini, A. R. Bioglass®/Chitosan-Polycaprolactone Bilayered Composite Scaffolds Intended for Osteochondral Tissue Engineering. J. Biomed. Mater. Res. Part A 2014, 102, 4510-4518.
  •  
  • 16. Landry, M. J.; Rollet, F.-G.; Kennedy, T. E.; Barrett, C. J. Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth. Langmuir 2018, 34, 8709-8730.
  •  
  • 17. Karazehir, T.; Gokce, Z. G.; Ates, M.; Sarac, A. S. Gold Nanoparticle/Nickel Oxide/Poly(pyrrole-N-propionic acid) Hybrid Multilayer Film: Electrochemical Study and its Application in Biosensing. EXPRESS Polym. Lett. 2017, 11, 449-466.
  •  
  • 18. Azioune, A.; Slimane, A. B.; Hamou, L. A.; Pleuvy, A.; Chehimi, M. M.; Perruchot, C.; Armes, S. P. Synthesis and Characterization of Active Ester-Functionalized Polypyrrole-Silica Nanoparticles:  Application to the Covalent Attachment of Proteins. Langmuir 2004, 20, 3350-3356.
  •  
  • 19. Wong, J. Y.; Langer, R.; Ingber, D. E. Electrically Conducting Polymers Can Noninvasively Control the Shape and Growth of Mammalian Cells. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3201-3204.
  •  
  • 20. Diaz, A. F.; Castillo, J. A.; Logan, J. A.; Lee, W. Y. Electrochemistry of Conducting Polypyrrole Films. Electroanal. Chem. 1981, 129, 115-132.
  •  
  • 21. Hoelzle, M. K.; Svitkina, T. The Cytoskeletal Mechanisms of Cell-Cell Junction Formation in Endothelial Cells. Mol. Biol. Cell 2012, 23, 310-323.
  •  
  • 22. Cory, A. H.; Owen, T. C.; Barltrop, J. A.; Cory, J. G. Use of an Aqueous Soluble Tetrazolium/Formazan Assay for Cell Growth Assays in Culture. Cancer Commun. 1991, 3, 207-212.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(2): 295-299

    Published online Mar 25, 2022

  • 10.7317/pk.2022.46.2.295
  • Received on Dec 5, 2021
  • Revised on Jan 13, 2022
  • Accepted on Jan 16, 2022

Correspondence to

  • Joo-Woon Lee
  • Chemistry - School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea

  • E-mail: jwoonlee@ut.ac.kr