Article
  • Crystallization-based Preparation Method of Polyurethane/Poly(N-isopropylacrylamide) Composite for Cooling System
  • Sooyeon Kim and Jonghwi Lee

  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • 냉각시스템을 위한 Polyurethane/Poly(N-isopropylacrylamide) 복합체의 결정화 기반 제조
  • 김수연 · 이종휘

  • 중앙대학교 공과대학 화학신소재공학부

References
  • 1. Cho, J. K.; Moon, J. H.; Kang, H. S. Energy Performance Analysis for Energy Saving Potentials of a Hospital Building : A Case Study Methodology Based on Annual Energy Demand Profiles, Korean J. Air-Cond. Refrig. Eng. 2016, 29, 29-37.
  •  
  • 2. Heidarinejad, M.; Dalgo, D. A.; Mattise, N. W.; Srebric, J. Personalized Cooling as An Energy Efficiency Technology for City Energy Footprint Reduction. J. Clean. Prod. 2018, 171, 491-505.
  •  
  • 3. Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Hu, L. A Radiative Cooling Structural Material. Science 2019, 364, 760-763.
  •  
  • 4. Pang, H. H.; Brace, C. J. Review of Engine Cooling Technologies for Modern Engines. Proceedings of the Institution of Mechanical Engineers. Proc. Inst. Mech. Eng. D 2004, 218, 1209-1215.
  •  
  • 5. Emdadi, Z.; Asim, N.; Yarmo, M. A.; Shamsudin, R. Investigation of More Environmental Friendly Materials for Passive Cooling Application Based on Geopolymer. APCBEE Procedia 2014, 10, 69-73.
  •  
  • 6. Rotzetter, A. C. C.; Schumacher, C. M.; Bubenhofer, S. B.; Grass, R. N.; Gerber, L. C.; Zeltner, M.; Stark, W. J. Thermoresponsive Polymer Induced Sweating Surfaces as an Efficient Way to Passively Cool Buildings. Adv. Mater. 2012, 24, 5352-5356.
  •  
  • 7. Cui, S.; Hu, Y; Huang, Z.; Ma, C; Yu, L; Hu, X. Cooling Performance of Bio-mimic Perspiration by Temperature-sensitive Hydrogel. Int. J. Therm. Sci. 2014, 79, 276-282.
  •  
  • 8. Bischofberger, I.; Trappe, V. New Aspects in the Phase Behaviour of Poly-N-isopropyl Acrylamide: Systematic Temperature Dependent Shrinking of PNiPAM Assemblies Well Beyond the LCST. Sci. Rep. 2015, 5, 15520.
  •  
  • 9. Boutris, C.; Chatzi, E. G.; Kiparissides, C. Characterization of the LCST Behaviour of Aqueous Poly(N-isopropylacrylamide) Solutions by Thermal and Cloud Point Techniques. Polymer 1997, 38, 2567-2570.
  •  
  • 10. Halake, K. S.; Lee, J. Superporous Thermo-responsive Hydrogels by Combination of Cellulose Fibers and Aligned Micropores. Carbohyd. Polym. 2014, 105, 184-192.
  •  
  • 11. An, S.; Kim, B.; Lee, J. Incomparable Hardness and Modulus of Biomimetic Porous Polyurethane Films Prepared by Directional Melt Crystallization of a Solvent. J. Cryst. Growth 2017, 469, 106-113.
  •  
  • 12. Cho, Y.; Lee, J. Anisotropic Mechanical Responses of Composites Having Water Microchannels. J. Ind. Eng. Chem. 2018, 60, 498-504.
  •  
  • 13. Kim, J.; Cho, Y.; Kim, S.; Lee, J. 3D Cocontinuous Composites of Hydrophilic and Hydrophobic Soft Materials: High Modulus and Fast Actuation Time. ACS Macro Lett. 2017, 6, 1119-1123.
  •  
  • 14. Kim, B. S.; Lee, J. Directional Crystallization of Dioxane in the Presence of PVDF Producing Porous Membranes. J. Cryst. Growth 2013, 373, 45-49.
  •  
  • 15. Kim, B. S.; Lee, J. Macroporous PVDF/TiO2 Membranes with Three-dimensionally Interconnected Pore Structures Produced by Directional Melt Crystallization. Chem. Eng. J. 2016, 301, 158-165.
  •  
  • 16. Kang, S.; Kang, T.-H.; Kim, B. S.; Oh, J.; Park, S.; Choi, I. S.; Lee, J.; Son, J. G. 2D Reentrant Micro-honeycomb Structure of Graphene-CNT in Polyurethane: High Stretchability, Superior Electrical/thermal Conductivity, and Improved Shape Memory Properties. Composites Part B: Eng. 2019, 162, 580-588.
  •  
  • 17. Lee, S.; Lee, J. Crystallization-based Preparation Method of Polymer Systems for Temperature-responsive Control of Water Droplets. Polym. Korea 2019, 43, 646-651.
  •  
  • 18. Kim, G.; Kim, H. J.; Noh, H. pH Sensitive Soft Contact Lens for Selective Drug-Delivery. Macromol. Res. 2018, 26, 278-283.
  •  
  • 19. Lee, M. K.; Chung, N.-O.; Lee, J. Membranes with Through-thickness Porosity Prepared by Unidirectional Freezing. Polymer, 2010, 51, 6258-6267.
  •  
  • 20. Lee, S.; Kim, H. J.; Chang, S. H.; Lee, J. Anisometric Nanocomposite Hydrogels with Temperature Responsive Compartments. Soft Matter. 2013, 9, 472-479.
  •  
  • 21. Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.; Xu, F. Bioactuators Based on Stimulus-responsive Hydrogels and Their Emerging Biomedical Applications. NPG Asia Materials 2019, 11, 64.
  •  
  • 22. Lin, Y.-J.; Lee, G.-H.; Chou, C.-W.; Chen, Y.-P.; Wu, T.-H.; Lin, H.-R. Stimulation of Wound Healing by PU/Hydrogel Composites Containing Fibroblast Growth Factor-2. J. Mater. Chem. B 2015, 3, 1931-1941.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(1): 50-55

    Published online Jan 25, 2021

  • 10.7317/pk.2021.45.1.50
  • Received on Jul 8, 2020
  • Revised on Sep 18, 2020
  • Accepted on Sep 20, 2020

Correspondence to

  • Jonghwi Lee
  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • E-mail: jong@cau.ac.kr