Article
  • Facile and Fast Photo-Polymerization of N-Vinyl Caprolactam via UV-C Irradiation
  • Habil Uzun, Ahmet Güngör , İsmail Kutlugün Akbay , and Tonguç Özdemir

  •  Department of Chemical Engineering, Mersin University, Mersin, Turkey

  • UV-C를 이용한 빠른 N-Vinyl Caprolactam 광중합 연구
References
  • 1. Hoogenboom, R. Temperature-responsive polymers: properties, synthesis and applications, in Smart Polymers and their Applications; Aguilar, M. R., Román, J. S., Eds.; Woodhead Publishing: U. K., 2014; pp 15-44.
  •  
  • 2. Aguilar, M. R.; San Román, J. Introduction to Smart Polymers and Their Applications. Smart Polym. Their Appl. 2014, 3, 1-11.
  •  
  • 3. Kuckling, D.; Doering, A.; Krahl, F.; Arndt, K.-F. Stimuli-Responsive Polymer Systems. in Polymer Science: A Comprehensive Reference, Elsevier B.V.: 2012; pp 377-413.
  •  
  • 4. Rinaudo, M.; Osada, Y. Stimuli Responsive Polymers. Actual. Chim. 2006, 300, 31-35.
  •  
  • 5. Medeiros, S. F.; Barboza, J. C. S.; Giudici, R.; Santos, A. M. Thermally-sensitive and Biocompatible Poly(N-vinylcaprolactam): A Kinetic Study of Free Radical Polymerization in Ethanol. J. Macromol. Sci. Part A 2013, 50, 763-773.
  •  
  • 6. Soto-Figueroa, C.; Galicia-García, T.; Rodríguez-Hidalgo, M. del R.; Vicente, L. Theoretical Study of Thermoresponsive Dendritic Polymeric Micelles: Micellar Phase Control and the Extraction of Organic Molecules by Temperature Effects. Eur. Polym. J. 2020, 127, 109596.
  •  
  • 7. Rullyani, C.; Singh, M.; Li, S.-H.; Sung, C.-F.; Lin, H.-C.; Chu, C.-W. Stimuli-responsive Polymer as Gate Dielectric for Organic Transistor Sensors. Org. Electron. 2020, 85, 105818.
  •  
  • 8. Baniasadi, M.; Yarali, E.; Foyouzat, A.; Baghani, M. Crack Self-healing of Thermo-responsive Shape Memory Polymers with Application to Control Valves, Filtration, and Drug Delivery Capsule. Eur. J. Mech. A/Solids 2021, 85, 104093.
  •  
  • 9. Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-Responsive Polymeric Micelles of Cabazitaxel for Prostate Cancer Targeted Therapy. Acta Biomater., 2020, 113, 501-511.
  •  
  • 10. Zhao, L.; Li, L.; Zhu, C.; Ghulam, M.; Qu, F. pH-responsive Polymer Assisted Aptamer Functionalized Magnetic Nanoparticles for Specific Recognition and Adsorption of Proteins. Anal. Chim. Acta 2020, 1097, 161-168.
  •  
  • 11. Liu, X.; Guan, J.; Lai, G.; Xu, Q.; Bai, X.; Wang, Z.; Cui, S. Stimuli-responsive Adsorption Behavior Toward Heavy Metal Ions Based on Comb Polymer Functionalized Magnetic Nanoparticles. J. Clean. Prod. 2020, 253, 119915.
  •  
  • 12. Li, J.; Li, X.; Liu, H.; Ren, T.; Huang, L.; Deng, Z.; Yang, Y.; Zhong, S. GSH and Light Dual Stimuli-responsive Supramolecular Polymer Drug Carriers for Cancer Therapy. Polym. Degrad. Stab. 2019, 168, 108956.
  •  
  • 13. Qiu, Y.; Park, K. Environment-sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2001, 53, 321-339.
  •  
  • 14. Çavuş, S.; Çakal, E. Synthesis and Characterization of Novel Poly(N-vinylcaprolactam-co-itaconic Acid) Gels and Analysis of pH and Temperature Sensitivity. Ind. Eng. Chem. Res. 2012, 51, 1218-1226.
  •  
  • 15. Liu, L.; Bai, S.; Yang, H.; Li, S.; Quan, J.; Zhu, L.; Nie, H. Controlled Release from Thermo-sensitive PNVCL-co-MAA Electrospun Nanofibers: the Effects of Hydrophilicity/Hydrophobicity of a Drug. Mater. Sci. Eng. C 2016, 67, 581-589.
  •  
  • 16. Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of N-Vinylcaprolactam and Characterization of Poly(N-Vinylcaprolactam). J. Macromol. Sci. Part A 2011, 48, 467-477.
  •  
  • 17. Çakal, E.; Çavuş, S. Novel Poly(N-vinylcaprolactam-co-2-(diethylamino)ethyl methacrylate) Gels: Characterization and Detailed Investigation on Their Stimuli-Sensitive Behaviors and Network Structure. Ind. Eng. Chem. Res. 2010, 49, 11741-11751.
  •  
  • 18. Cheng, S.; Feng, W.; Pashikin, I.; Yuan, L.; Deng, H.; Zhou, Y. Radiation Polymerization of Thermo-sensitive Poly(N-vinylcaprolactam). Radiat. Phys. Chem. 2002, 63, 517-519.
  •  
  • 19. Jun, L.; Bochu, W.; Yazhou, W. Thermo-sensitive Polymers for Controlled-release Drug Delivery Systems. Int. J. Pharmacol. 2006, 2, 513-519.
  •  
  • 20. Dalton, L. G. M.; Halligan, S.; Killion, J.; Murray, K. A. Smart Thermosensitive Poly(N-vinylcaprolactam) Based Hydrogels for Biomedical Applications. Adv. Environ. Biol. 2014, 8(24), 1-6.
  •  
  • 21. Usanmaz, A.; Özdemir, T.; Polat, Ö. Solid State Polymerization of N-vinylcaprolactam via Gamma Irradiation and Characterization. J. Macromol. Sci. Part A 2009, 46, 597-606.
  •  
  • 22. Wan, D.; Zhou, Q.; Pu, H.; Yang, G. Controlled Radical Polymerization of N-vinylcaprolactam Mediated by Xanthate or Dithiocarbamate. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3756-3765.
  •  
  • 23. Jiang, X.; Yin, J. Copolymeric Photoinitiators Containing In-chain Thioxanthone and Coinitiator Amine for Photopolymerization. J. Appl. Polym. Sci. 2004, 94, 2395-2400.
  •  
  • 24. Jiang, X.; Li, Y.; Lu, G.; Huang, X. A Novel Poly(N-vinylcaprolactam)-based Well-defined Amphiphilic Graft Copolymer Synthesized by Successive RAFT and ATRP. Polym. Chem. 2013, 4, 1402-1411.
  •  
  • 25. Montes, J. Á.; Ortega, A.; Burillo, G. Dual-stimuli Responsive Copolymers Based on N-vinylcaprolactam/Chitosan. J. Radioanal. Nucl. Chem. 2014, 303, 2143-2150.
  •  
  • 26. Tang, G.; Hu, M.; Ma, Y.; You, D.; Bi, Y. Synthesis and Solution Properties of Novel Thermo- and pH-responsive Poly(N-vinylcaprolactam)-based Linear-dendritic Block Copolymers. RSC Adv. 2016, 6, 42786-42793.
  •  
  • 27. Kermagoret, A.; Mathieu, K.; Thomassin, J.-M.; Fustin, C.-A.; Duchêne, R.; Jérôme, C.; Detrembleur, C.; Debuigne, A. Double Thermoresponsive Di- and Triblock Copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: Synthesis and Comparative Study of Solution Behaviour. Polym. Chem. 2014, 5, 6534-6544.
  •  
  • 28. Cortez-Lemus, N. A.; Castro-Hernández, A. Intrinsic Viscosity of Poly(N-vinylcaprolactam) with Varying the Architecture. J. Polym. Res. 2020, 27, 225.
  •  
  • 29. Morfin-Gutiérrez, A.; Meléndez-Ortiz, H. I.; Puente-Urbina, B. A.; García-Cerda, L. A. Synthesis of Poly(N-vinylcaprolactam)-Grafted Magnetite Nanocomposites for Magnetic Hyperthermia. J. Nanomater. 2018, 2018, 1-6.
  •  
  • 30. Sanna, R.; Fortunati, E.; Alzari, V.; Nuvoli, D.; Terenzi, A.; Casula, M. F.; Kenny, J. M.; Mariani, A. Poly(N-vinylcaprolactam) Nanocomposites Containing Nanocrystalline Cellulose: a Green Approach to Thermoresponsive Hydrogels. Cellulose 2013, 20, 2393-2402.
  •  
  • 31. Makhaeva, E. E.; Thanh, L. T. M.; Starodoubtsev, S. G.; Khokhlov, A. R. Thermoshrinking Behavior of Poly(Vinylcaprolactam) Gels in Aqueous Solution. Macromol. Chem. Phys. 1996, 197, 1973-1982.
  •  
  • 32. Zhao, J.; Wang, H. Exothermic Nonreversing Process in the Phase Transition of Poly(N-isopropylacrylamide) Studied with Stochastic Temperature-modulated DSC. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1869-1877.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(1): 22-30

    Published online Jan 25, 2021

  • 10.7317/pk.2021.45.1.22
  • Received on Jul 3, 2020
  • Revised on Sep 16, 2020
  • Accepted on Sep 23, 2020

Correspondence to

  • Habil Uzun, Ahmet Güngör, İsmail Kutlugün Akbay
  •  Department of Chemical Engineering, Mersin University, Mersin, Turkey

  • E-mail: ahmet.gungor@mersin.edu.tr, akbay@mersin.edu.tr