Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
충북대학교 공과대학 공업화학과
: In this study, poly(methyl methacrylate-b-tert-butyl
methacrylate) with controlled molecular weight and composition was synthesized
by high vacuum anion polymerization and branched polymers, poly[methyl methacrylate-b-poly(ethylene
glycol) methacrylate], poly(MMA-b-PEGMA) were synthesized by hydrolysis
and grafting-onto reaction. Grafting-onto reactions had many steric hindrances and
coupling efficiency decreased as the content of methacrylic acid (MA) increased. As a result, the
branched polymer contained both PEGMA and unreacted MA. Their relative amounts
affected the physical properties of the polymer and Tg was
found to decrease as the amount of MA decreased. Also, the formation of a
complex by the introduction of lithium salt resulted in a decrease in flexibility
and an increase in the Tg. From the electrochemical
investigation, good ionic conductivity was exhibited in polymer electrolyte
having low Tg.
: 본 연구에서는 고진공 음이온중합을 통해 분자량 및 조성이
조절된 poly(methyl methacrylate-b-tert-butyl
methacrylate)를 합성하고 가수분해 및 grafting-onto 반응을 통해 가지형
고분자인 poly[methyl methacrylate-b-poly(ethylene glycol)
methacrylate], poly(MMA-b-PEGMA)를 제조하였다.
Grafting-onto 반응 결과 많은 입체적 장애가 발생하였으며, methacrylic
acid(MA)의 함량이 많을수록 커플링 효율이 감소하였다. 그 결과, 가지형 고분자에는 반응에 참여한 PEGMA와 미반응 MA가 동시에 존재하게 되었다. 이들의 상대적인 양이 고분자물성에
영향을 주었으며 특히 MA가 적게 존재할수록 상대적으로 낮은 Tg를 나타내었다. 또한 전기화학 측정결과, 양호한 이온전도도는 낮은 유리전이온도를 가지는 고분자 전해질에서 발현되었다
Keywords: anionic polymerization, hydrolysis, grafting-onto, branched polymer, ionic conductivity
2019; 43(6): 914-920
Published online Nov 25, 2019
Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea