Molecular dynamics simulations for the penetrable-sphere model have been carried out over a wide range of the packing fraction φ and the repulsive energy parameter ε* to investigate the self-diffusion properties of the bounded repulsive fluids. The resulting self-diffusion data D are compared with theoretical approximations including Boltzmann and Enskog diffusion predictions in the gas kinetic theory. Empirical Enskog-like approximation based on the Enskog theory in the hard-sphere model we also proposed. The product of φD exhibits the transitional behavior from a nearly constant function of density in the lower repulsive system (ε*=0.25) where the soft-type collisions are dominant, to a rapidly decreasing function in the higher repulsive system (ε*=4.0) where most particle collisions are the hard-type reflections. For highly repulsive systems with high densities, a relatively poor agreement with our proposed prediction are observed due to the cluster-forming structure and phase transition from the fluid-like to the solid-like state in such bounded repulsive fluids.
유한 척력적 유체의 자체 확산 특성을 고찰하고자 침투성 구형 모델에서 분자 동력학 방법을 이용한 전산 모사를 다양한 범위의 입자 충전 분율 φ 및 척력적 에너지 상수 ε* 조건에서 수행하였다. 전산 모사로부터 측정된 자체 확산 계수 D는 기체 운동 이론식을 기초로 한 Boltzmann 및 Enskog 확산식을 포함하여 관련 이론식들과 비교하였으며 Enskog 이론식과 유사한 형태의 경험적 확산식을 제안하였다. 입자 충전 분율과 자체 확산 계수의 곱의 항 φD는 전이적 변환 특성을 보였다. 연체형 입자 충돌이 주된 낮은 척력적 에너지 조건인 ε*=0.25에서 거의 상수 함수 형태를 띠지만, 반면 강체형 입자 충돌이 주된 높은 척력적 에너지 조건인 ε*=4.0에서 급격한 감소를 보인다. 높은 밀도 조건에서 높은 척력적 에너지를 갖는 경우 본 연구에서 제안된 Enskog 형태의 경험식과 전산 결과와의 불일치는 유한 척력적 유체에서 나타나는 클러스터 형성 구조 및 이에 기인되는 유체 상태에서 고체 상태로 상전이변화가 주된 이유로 설명되었다.
Keywords: self-diffusion; molecular dynamics simulation; bounded repulsive fluid