In this work, two thermal cationic latent catalysts, i.e., triphenyl benzyl phosphonium
hexafluoroantimonate (TBPH) and benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized. And the thermal and mechanical properties of difunctional epoxy (diglycidylether of bisphenol A, DGEBA) resins initiated by 1 phr of either TBPH or BMPH catalyst were investigated. As experimental results, the epoxy/TBPH system showed higher curing temperature and critical stress intensity factor (KIC) than those of epoxy/BMPH. This could be interpreted in terms of slow thermal diffusion rate and bulk structure of four phenyl groups in TBPH. However, the decomposed activation energy determined from Coats-Redfern method was lower in the case of epoxy/TBPH. This result was probably due to the fact that broken short chain
structure was developed by steric hindrance of TBPH.
본 연구에서는 두 가지 열잠재성 양이온 촉매인 triphenyl benzyl phosphoinium hexafluoroantimonate
(TBPH)와 benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH)를 새로이 합성하였다. 그리고 TBPH 혹은 BMPH 1 phr에 의해 개시되어진 이관능성 에폭시 수지(diglycidylether of bisphenol A, DGEBA)의 열 및 기계적 특성들을 연구하였다. 그 실험적인 결과들로서, 에폭시/TBPH 시스템은 에폭시/BMPH 시스템 보다 더 높은 경화 온도와 임계응력 세기 인자 (KIC) 값을 보였다. 이것은 TBPH에서 4개의 페닐기의 느린 열확산 속도와 벌크 구조 때문으로 사료된다. 그러나, Coats-Redfern 방법에 의하여 결정된 분해 활성화 에너지는 TBPH의 경우가 더 낮게 나타났다. 이러한 결과는 TBPH의 입체장애에 의해서 끊어진 짧은 사슬 구조가 발달되었기 때문인 것으로 사료된다.
Keywords: thermal cationic latent catalyst; critical stress intensity factor; bulk structure; Coats-Redfern; steric hindrance